
Optimized Hardware Algorithm for Integer Cube
Root Calculation and Its Efficient Architecture

Rachmad Vidya Wicaksana Putra1, Trio Adiono2

Microelectronics Center
Institut Teknologi Bandung, Indonesia

1 rachmad@pme.itb.ac.id | rachavidyawp@gmail.com, 2 tadiono@stei.itb.ac.id

Abstract—Scientific applications, digital signal processing, and
multimedia usually need to compute a large number of arithmetic
operations. One of them is cube root operation. It is one of the
fundamental arithmetic operation which is not received much
attention. Because of its calculation complexity, cube root is
difficult to implement in Field Programmable Gate Array (FPGA).
Hence in this paper, we propose an optimized hardware algorithm
for integer cube root calculation and its efficient architecture.
Integer cube root calculation is computed by using 3-digits of
binary number and iterative calculation. An optimized hardware
algorithm idea is reducing computational complexity in factor
generator unit. For design evaluations, we use 32-bit integer cube
root architecture and simulate it with several test vectors.
Evaluation results show us that the design architecture is valid. The
design latency is defined by (N/3)+2, with N is bit-width of the
design input. Hence, 32-bit design will be executed only in
((32+1)/3)+2 = 13 clock cycles. The design also has been synthesized
for several FPGA implementation with promising results in area
consumption and speed.

Keywords—Cube root; optimized hardware algorithm; FPGA;
efficient architecture.

I. INTRODUCTION

Scientific applications, digital signal processing, multimedia,

and 3D graphics applications usually need to compute a large
number of arithmetic operations, such as square root, cube root,
logarithm, trigonometric functions, and etc [1], [2]. Cube root
operation is one of the fundamental arithmetic operation which
is used in many applications but not received much attention [2].
There are only few proposals about cube root computation,
especially about its implementation in Field Programmable Gate
Array (FPGA) [1]. Because of its calculation complexity, cube
root is difficult to implement in FPGA. Hence, hardware
algorithm and VLSI architecture studies on cube root calculation
will give opportunities to explore and implement cube root in
FPGA efficiently.

Several publications about cube root algorithm and its FPGA
implementation have been presented. An algorithm of cube root
computation for integer operand was proposed in [3]. It
discussed the integer extraction for performing cube root
operation. Furthermore, there were also some publications that
discussed about the arithmetic explorations. For example, the k-
th root calculation is performed by extending the formula from
square root and cube root algorithms as discussed in [4]-[6].

Besides arithmetic explorations, There were also publications
that discussed about hardware implementations. Paper [1]
proposed a FPGA implementation of a binary32 floating point
cube root which comply with IEEE 754-2008 standard. This
design uses Newton-Raphson method for data execution. It
consumes 230 slices and 12 Dsp48s area, and 19 clock cycles
latency. Another design is radix-2 cube root architecture [2]. It
was estimated to consume 7135 nand2 standard cell and 35.1
τINV delay of critical path (τINV is delay of an inverter with four
fan-out FO4).

From literature studies, we conclude that the exploration of
cube root calculation were mostly on arithmetic algorithm. Only
few papers implemented the designs in FPGA. Hence, we have
a target to design a low-complexity architecture of integer cube
root calculation and implement it in FPGA efficiently. Our
design methodology is started from mathematical approach, a
cube formula. We do a reverse calculation to create a cube root
formula. From the obtained formula, we optimize the calculation
in order to make it suitable with hardware implementation in
FPGA. Hopefully, this research can contribute in exploration of
cube root algorithm and its FPGA implementation studies.

This paper is organized in the number of sections. Section I
is introduction about the research backgrounds and brief
descriptions of the several past researches. Section II is a brief
explanation of the related theories. Section III is explanation of
the proposed algorithm. Section IV is the proposed architecture.
Section V is the design evaluation test and analysis. Last main
section is a concluding remark. This paper is enclosed with
acknowledgment and references respectively.

II. RELATED THEORIES

The integer cube root algorithm is basically derived from

simple equation. We know that cube root function is inverse
function from cube function. For each integer number x, we can
represent it as two digits number p and q as mentioned in [7].
According to [7], we can calculate a cube operation from x = pq
by using standard cube formulation but with special addition
operations. Hence, if we extend (1) with cube operation, we will
obtain equations (2) and (3).

x = pq ; p and q are digits of decimal number (1)

x3 = (pq)3 (2)

2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) November 9-12, 2015

263978-1-4673-6499-7/15/$31.00 ©2015 IEEE

x3 = p3 (+) 3p2q (+) 3pq2 (+) q3 (3)

Operator (+) is not standard addition, but special addition. For
easier understanding, we will demonstrate the equation with
exact integer number. If we take x = 56 (decimal), then p = 5
and q = 6, we can compute (3) with substitution procedure and
we obtain (4) and (5). In order to process equation (5), we need
to arrange the addition calculations of 125 (+) 450 (+) 540 (+) 216
become ladder-like addition process as shown in Fig. 1.

x3 = 53 (+) 3 • 52 • 6 (+) 3 • 5 • 62 (+) 63 (4)

x3 = 125 (+) 450 (+) 540 (+) 216 (5)

Fig. 1. Ladder-like addition process

From the calculation processes, we can see that (+) means
addition with specific order of digit position. Hence, we have to
be aware when doing the calculation. By using this approach, we
can implement the same calculation process to binary numbers.
This structure is fundamental architecture for cube operation,
thus we do not need any major modifications.

III. PROPOSED ALGORITHM

A. Generic Algorithm

Actually, the proposed algorithm is inspired by (1) - (3). But,
the equation is modified based on binary form in order to make
the design suitable for FPGA implementation. Assume we take
(1) as initial equation to modify, we will get initial equations as
(6) - (8).

x = ab ; a and b are digits of binary number (6)

x3 = (ab)3 (7)

x3 = a3 (+) 3a2b (+) 3ab2 (+) b3 (8)

We can see that (8) consists of two main parts, independent

and dependent segments. Independent segment consists of a3 and
b3, while dependent segment consists of 3a2b (+) 3ab2 (+) b3.
Independent segment means there is only one variable involved,
meanwhile dependent segment means there are two or more
variables involved.

If we compute the independent segment, result from a3 will
contribute dominant in the most significat number. In binary
term, we call it the most significant bit (MSB). Meanwhile,
result from b3 will contribute dominant in the least significant
number. In binary term, we call it the least significant bit (LSB).

In this approach, b3 will not be treated as independent segment,
but treated as part of dependent segment. It is because b3 will
also contribute in dependent segment. Its dependent behavior is
shown in Fig. 2. The dependent segment (3a2b (+) 3ab2 (+) b3)
will be computed just like iterative calculation as many as
calculations needed between MSB and LSB. In order to
understand the process easily, Fig. 2 shows us the calculation
process in the cube root step-by-step.

Fig. 2. Step-by-step cube root calculation

If we observe the cube root calculation step-by-step in Fig.

2, we can see that there are several pattern involved. It is slightly
similar with square root architecture in our previous works [8],
[9]. Firstly, the input data D is divided into several 3-digits
subgroups. If the original data D bit-width can not be exactly
divided by 3, it has to be appended with zero “0” as MSB
instead. Secondly, the first calculation is derived to eliminate the
most significant value from data D. It is predicted to be the result
of a3. Hence, we predict whether the value of a is ‘0’ or ‘1’. If
the prediction has been determined, subtraction process will be
conducted. The next pattern onward is the factor generation that
complies to 3a2b (+) 3ab2 (+) b3. This process is part of iterative
calculation. The value of a and b are not the same with the
previous a for MSB calculation or b for LSB calculation. Thus,
the index notation of a and b are different for each stage in
generated factor calculation. In the last iterative calculation of
3a2b (+) 3ab2 (+) b3 will contain b value for LSB calculation.
From those processes, we will get the answer Q from cumulative
guessing bits and remainder R as the last result of subtraction.

B. Optimized Algorithm

From equation (8), we can see that there are two parts that
can be optimized. First one is the a3 part and second one is the
(3a2b (+) 3ab2 (+) b3) part. For the first one, a3 can be optimized
as single a. It is because of the probability of a value are only
‘0’ or ‘1’. Hence, in binary perspective a3 = a. For the second
one, 3a2b (+) 3ab2 (+) b3 can be optimized as 3a2b (+) 3ab2 (+) b3

= 3ab [a (+) b] (+) b3 since the (+) operation condition can be
established in hardware architecture easily. By using those two
optimizations, we will get an optimized calculation as (9) - (10).

a3 = a (9)

3a2b (+) 3ab2 (+) b3 = 3ab [a (+) b] (+) b3 (10)

If we observe (9) and (10), we will see that there are two

hardware implementations of factor generators for (9) and (10).
But, we can optimize these two factor generators into a single
architecture. If we observe Fig. 2, the first stage prediction is

2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) November 9-12, 2015

264

done for determining value of a and the second stage prediction
onward are done for determining b. It is because from the second
prediction onward, an can be computed as 2 (an-1 + bn-1). Hence,
we can merge the architectures for (9) and (10) become single
architecture that represents 3ab [a (+) b] (+) b3, since the first
prediction is place on b and initial value of a = 0. For example,
if we predict that a = 0 in the first stage prediction, we will get
3ab [a (+) b] (+) b3 = 3x0x0 [0 (+) 0] (+) 03 = 0. On the other hand,
if we predict that a = 1 in the first stage prediction, we will get
3ab [a (+) b] (+) b3 = 3x0x1 [0 (+) 1] (+) 13 = 1. It is exactly the
same with a itself. After those three optimizations, we can
achieve an optimized hardware algorithm for cube root
calculation that can be written as following pseudocode.

proposed cube root algorithm

definition
 D input data;
 N input bit-width;
 Q result;
 d data accumulator;
 f generated factor;
 r remainder;
 a cube root variable a;
 b cube root variable b;
 iH higher bound index;
 iL lower bound index;
 i iteration process index;
initialization
 a = 0;
 b = 0;
 iH = N - 1;
 iL = N - 3;
 d = D[iH : iL];
process
for (i = 1 to N/3) then
 b = 1;
 f = 3ab (a + b) + b;
 if (f <= d)
 r = d - f;
 else
 r = d;
 b = 0;
 end if
 Q = {Q[(N/3) - 1], b};
 a = 2 (a + b);
 d = {r, D[(iH - 3i : iL - 3i]};
end for

IV. PROPOSED ARCHITECTURE

After optimizing the algorithm, we can design an optimized

architecture for cube root calculator. There are five functional
blocks to establish cube root calculator: main datapath, factor
generator, control, sign-in, and sign-out units. Proposed main
datapath architecture is shown in Fig. 3. In this architecture,
components usage costs 3 buffer registers, 2 multiplexers, 1

concatenation, and 1 subtraction. It shows that main datapath is
efficiently designed by using simple operations. For factor
generator unit, proposed architecture is shown in Fig. 4. Its
components usage cost 1 buffer register, 2 shifters, 6
multiplexers, 3 addition, and 1 multiplication. Multiplication is
the most complex and area consuming operation here. Hence,
we choose iterative process architecture in order to optimize the
area consumption.

Main datapath and factor generator units are connected each
other through generated factor signal. In Fig.3, generated factor
signal has n+1 bit-width. It needs to be compared with the
existing accumulated data from accumulator register. It is
produced from factor generator unit in Fig. 4, which is illustrated
as output signal. After the main datapath and factor generator
units are succesfully designed, we need to add three more units:
control, sign-in, and sign-out units.

Sign-in unit is responsible to check the input data format,
sign integer has positive and negative values. In order to fulfill
these requirements, we design sign-in unit to check if the input
data is positive or negative. If input data is in positive form, it
will be passed through to main datapath unit directly. If input
data is in negative form that complies to 2’s complement format,
it will be converted to positive form first. Sign-out unit is
responsible to convert the obtained result into valid format. If
the result has to be positive, it will be passed through output
directly. If result has to be negative, it will be converted to 2’s
complement format first before passed through output. Control
unit is responsible to control the flow of cube root computation.
Integrating all these units will establish a complete cube root
calculator architecture as shown in Fig. 5. Actually, proposed
architecture is generic architecture for integer cube root
calculation. Hence, this architecture dan be adapted to comply
any number of input bit-width scalability (e.g 16-bit, 32-bit, 64-
bit, 128-bit, etc). In this research, we use 32-bit input for
prototyping purpose.

Fig. 3. Main datapath architecture

2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) November 9-12, 2015

265

Fig. 4. Factor generator architecture

Fig. 5. Complete architecture for cube root calculator

V. EVALUATION AND ANALYSIS

A. Functional Test Evaluation

For functional test purpose, we implement the proposed cube
root architecture for 32-bit input bit-width by RTL coding and
simulate it in Modelsim software. Fig. 6 shows the simulation
result. We can see that integer input data can be computed

successfully and valid output can be achieved after several clock
cycles. For positive integer example, input data value is 75366
and valid output is 42, because 75366 = 423 + 1278; input data
value is 1730482 and valid output is 120, because 1730482 =
1203 + 2482. For negative integer example, input data value is -
62976064 and valid output is -397, because |-62976064| = |-3973|
+ 405291. Hence, we can conclude that proposed design is valid.

Fig. 7 shows the latency cost. We can see in the waveform,
calculation process needs 13 clock cycles latency. It means that
a 32-bit input data design will consume 13 clock cycles latency.
Input bit-width N is 32-bits. Thus, it needs to be appended
becomes 33-bits in order to accommodate 3-digit subgroup
system. Thus, latency cost will be [(32+1)/3]+2. We can state it
in general form as [(N+1)/3]+2.

Fig. 6. Simulation result

Fig. 7. Latency cost

B. Synthesis Report

The design synthesis has been conducted for N = 32. Table I
shows the synthesis results for a 32-bit input design architecture.
Synthesis processes are done for several implementation FPGA
type. The results show that the design consumes small area and
has promising speed. The worst case delay happens from register
in factor generator to remainder register in main datapath. Thus,
for pipelining strategy, we can insert a pipeline into this path to
reduce worst case delay.

TABLE I. SYNTHESIS RESULTS

 Altera Xilinx
Family Cyclone II Stratix II Spartan 6 Virtex 5

Area
429 LEs 288 ALUTs 415 LUTs 380 LUTs

121 Reg 121 Reg 121 Reg 119 Reg

Delay (ns) 18.32 13.73 24.94 14.49

Freq (MHz) 54.60 72.81 40.09 69.01

C. Benchmarks

Comparison with other works might be hard to do, because
the publications about the cube root FPGA implementation are
hard to be found. In several cases, the existing publications can

2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) November 9-12, 2015

266

not be compared to each other directly. Because, each paper
usually has a specific issue for the calculation or its target
application. For example, paper [1] proposed a cube root
architecture for IEEE 754-2008 standard. Although it has the
same purpose to calculate cube root value, but the target
application is different to ours.

VI. CONCLUSION

An optimized integer cube root algorithm and its efficient

architecture for FPGA implementation are presented in this
paper. Integer cube root calculation is computed by using 3-
digits of binary number and iterative calculation. Proposed
algorithm’s idea is reducing computational complexity in factor
generator. For design evaluations, we design a 32-bit integer
cube root architecture. Evaluation results show us that the design
architecture is valid. The design latency is defined by (N/3)+2,
with N is bit-width of the design input. The design also has been
synthesized for several FPGA with promising results in area
consumption and speed.

ACKNOWLEDGMENT

This research is supported by Integrated Circuit (IC) Design

Laboratory, Microelectronics Center (PME), Institut Teknologi
Bandung, Indonesia.

REFERENCES

[1] C.M. Guardia and E. Boemo, “FPGA implementation of a binary32

floating point cube root,” Proc. of Southern Conf. on Programmable Logic,
pp.1-6, November 2014.

[2] J.-A. Pineiro et al., “A radix-2 digit-by-digit architecture for cube root,”
IEEE Trans. on Computers, vol. 57, pp.562-566, April 2008.

[3] H. Peng, “Algorithms for extracting square roots and cube roots,” Proc. of
Symp. on Comput. Arithmetic, pp.121-126, May 1981.

[4] P. Montuschi et al., “A digit-by-digit algorithm for mth root extraction,”
IEEE Trans. on Computers, vol. 56, pp.1696-1706, December 2007.

[5] A. Vazquez and J.D. Bruguera, “Composite iterative algorithm and
architecture for q-th root calculation,” Proc. of Symp. on Computer
Arithmetic, pp.52-61, July 2011.

[6] S. Aslan et al., “A high-level synthesis and verification tool for application
specific kth root processing engine,” Proc. of Int. Midwest Symp. on
Circuits and Systems, pp.1051-1054, August 2013.

[7] M. Ramalatha et al., “A novel time and energy efficient cubing circuit
using vedic mathematics for finite arithmetic,” Proc. of Int. Conf. on
Advances in Recent Technologies in Communication and Computing,
pp.873-875, October 2009.

[8] R.V.W. Putra, “A novel fixed-point square root algorithm and its digital
hardware design,” Proc. of Int. Conf. on ICT for Smart Society, pp.1-4,
June 2013.

[9] R.V.W. Putra and T. Adiono, “A register-free and homogenous
architecture for square root algorithm,” Proc. of Int. Conf. on Computer,
Control, Informatics and Its Applications, pp.64-68, October 2014.

2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS) November 9-12, 2015

267

