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Abstract—Scientific applications, digital signal processing, and 
multimedia usually need to compute a large number of arithmetic 
operations. One of them is cube root operation. It is one of the 
fundamental arithmetic operation which is not received much 
attention. Because of its calculation complexity, cube root is 
difficult to implement in Field Programmable Gate Array (FPGA). 
Hence in this paper, we propose an optimized hardware algorithm 
for integer cube root calculation and its efficient architecture. 
Integer cube root calculation is computed by using 3-digits of 
binary number and iterative calculation. An optimized hardware 
algorithm idea is reducing computational complexity in factor 
generator unit. For design evaluations, we use 32-bit integer cube 
root architecture and simulate it with several test vectors. 
Evaluation results show us that the design architecture is valid. The 
design latency is defined by (N/3)+2, with N is bit-width of the 
design input. Hence, 32-bit design will be executed only in 
((32+1)/3)+2 = 13 clock cycles. The design also has been synthesized 
for several FPGA implementation with promising results in area 
consumption and speed. 

Keywords—Cube root; optimized hardware algorithm; FPGA; 
efficient architecture. 

 
I. INTRODUCTION  

 
Scientific applications, digital signal processing, multimedia, 

and 3D graphics applications usually need to compute a large 
number of arithmetic operations, such as square root, cube root, 
logarithm, trigonometric functions, and etc [1], [2]. Cube root 
operation is one of the fundamental arithmetic operation which 
is used in many applications but not received much attention [2]. 
There are only few proposals about cube root computation, 
especially about its implementation in Field Programmable Gate 
Array (FPGA) [1]. Because of its calculation complexity, cube 
root is difficult to implement in FPGA. Hence, hardware 
algorithm and VLSI architecture studies on cube root calculation 
will give opportunities to explore and implement cube root in 
FPGA efficiently. 

Several publications about cube root algorithm and its FPGA 
implementation have been presented. An algorithm of cube root 
computation for integer operand was proposed in [3]. It 
discussed the integer extraction for performing cube root 
operation. Furthermore, there were also some publications that 
discussed about the arithmetic explorations. For example, the k-
th root calculation is performed by extending the formula from 
square root and cube root algorithms as discussed in [4]-[6]. 

Besides arithmetic explorations, There were also publications 
that discussed about hardware implementations. Paper [1] 
proposed a FPGA implementation of a binary32 floating point 
cube root which comply with IEEE 754-2008 standard. This 
design uses Newton-Raphson method for data execution. It 
consumes 230 slices and 12 Dsp48s area, and 19 clock cycles 
latency. Another design is radix-2 cube root architecture [2]. It 
was estimated to consume 7135 nand2 standard cell and 35.1 
τINV delay of critical path (τINV is delay of an inverter with four 
fan-out FO4).  

From literature studies, we conclude that the exploration of 
cube root calculation were mostly on arithmetic algorithm. Only 
few papers implemented the designs in FPGA. Hence, we have 
a target to design a low-complexity architecture of integer cube 
root calculation and implement it in FPGA efficiently. Our 
design methodology is started from mathematical approach, a 
cube formula. We do a reverse calculation to create a cube root 
formula. From the obtained formula, we optimize the calculation 
in order to make it suitable with hardware implementation in 
FPGA. Hopefully, this research can contribute in exploration of 
cube root algorithm and its FPGA implementation studies. 

This paper is organized in the number of sections. Section I 
is introduction about the research backgrounds and brief 
descriptions of the several past researches. Section II is a brief 
explanation of the related theories. Section III is explanation of 
the proposed algorithm. Section IV is the proposed architecture. 
Section V is the design evaluation test and analysis. Last main 
section is a concluding remark. This paper is enclosed with 
acknowledgment and references respectively.    

 
II. RELATED THEORIES  

 
The integer cube root algorithm is basically derived from 

simple equation. We know that cube root function is inverse 
function from cube function. For each integer number x, we can 
represent it as two digits number p and q as mentioned in [7]. 
According to [7], we can calculate a cube operation from x = pq 
by using standard cube formulation but with special addition 
operations. Hence, if we extend (1) with cube operation, we will 
obtain equations (2) and (3). 
 

x = pq ;    p and q are digits of decimal number (1)  
   
x3 = (pq)3  (2)    
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x3 = p3 (+) 3p2q (+) 3pq2 (+) q3  (3)    
 

Operator (+) is not standard addition, but special addition. For 
easier understanding, we will demonstrate the equation with 
exact integer number. If we take x = 56 (decimal), then p = 5 
and q = 6, we can compute (3) with substitution procedure and 
we obtain (4) and (5). In order to process equation (5), we need 
to arrange the addition calculations of 125 (+) 450 (+) 540 (+) 216 
become ladder-like addition process as shown in Fig. 1. 
 

x3 = 53 (+) 3 • 52 • 6 (+) 3 • 5 • 62 (+) 63  (4)   
  
x3 = 125 (+) 450 (+) 540 (+) 216  (5)    

 

 
Fig. 1. Ladder-like addition process 

From the calculation processes, we can see that (+) means 
addition with specific order of digit position. Hence, we have to 
be aware when doing the calculation. By using this approach, we 
can implement the same calculation process to binary numbers. 
This structure is fundamental architecture for cube operation, 
thus we do not need any major modifications. 

 
III. PROPOSED ALGORITHM  

 
A. Generic Algorithm 

Actually, the proposed algorithm is inspired by (1) - (3). But, 
the equation is modified based on binary form in order to make 
the design suitable for FPGA implementation. Assume we take 
(1) as initial equation to modify, we will get initial equations as 
(6) - (8).  
 

x = ab ;    a and b are digits of binary number (6)  
   
x3 = (ab)3  (7)    
 
x3 = a3 (+) 3a2b (+) 3ab2 (+) b3  (8)    

 
We can see that (8) consists of two main parts, independent 

and dependent segments. Independent segment consists of a3 and 
b3, while dependent segment consists of 3a2b (+) 3ab2 (+) b3. 
Independent segment means there is only one variable involved, 
meanwhile dependent segment means there are two or more 
variables involved.  

If we compute the independent segment, result from a3 will 
contribute dominant in the most significat number. In binary 
term, we call it the most significant bit (MSB). Meanwhile, 
result from b3 will contribute dominant in the least significant 
number. In binary term, we call it the least significant bit (LSB). 

In this approach, b3 will not be treated as independent segment, 
but treated as part of dependent segment. It is because b3 will 
also contribute in dependent segment. Its dependent behavior is 
shown in Fig. 2. The dependent segment (3a2b (+) 3ab2 (+) b3) 
will be computed just like iterative calculation as many as 
calculations needed between MSB and LSB. In order to 
understand the process easily, Fig. 2 shows us the calculation 
process in the cube root step-by-step. 

 

 
Fig. 2. Step-by-step cube root calculation 

 
If we observe the cube root calculation step-by-step in Fig. 

2, we can see that there are several pattern involved. It is slightly 
similar with square root architecture in our previous works [8], 
[9]. Firstly, the input data D is divided into several 3-digits 
subgroups. If the original data D bit-width can not be exactly 
divided by 3, it has to be appended with zero “0” as MSB 
instead. Secondly, the first calculation is derived to eliminate the 
most significant value from data D. It is predicted to be the result 
of a3. Hence, we predict whether the value of a is ‘0’ or ‘1’. If 
the prediction has been determined, subtraction process will be 
conducted. The next pattern onward is the factor generation that 
complies to 3a2b (+) 3ab2 (+) b3. This process is part of iterative 
calculation. The value of a and b are not the same with the 
previous a for MSB calculation or b for LSB calculation. Thus, 
the index notation of a and b are different for each stage in 
generated factor calculation. In the last iterative calculation of 
3a2b (+) 3ab2 (+) b3 will contain b value for LSB calculation. 
From those processes, we will get the answer Q from cumulative 
guessing bits and remainder R as the last result of subtraction.  
 
B. Optimized Algorithm 

From equation (8), we can see that there are two parts that 
can be optimized. First one is the a3 part and second one is the 
(3a2b (+) 3ab2 (+) b3) part. For the first one, a3 can be optimized 
as single a. It is because of the probability of a value are only 
‘0’ or ‘1’. Hence, in binary perspective a3 = a. For the second 
one, 3a2b (+) 3ab2 (+) b3 can be optimized as 3a2b (+) 3ab2 (+) b3 

= 3ab [a (+) b] (+) b3 since the (+) operation condition can be 
established in hardware architecture easily. By using those two 
optimizations, we will get an optimized calculation as (9) - (10). 
 

a3 = a  (9)    
 
3a2b (+) 3ab2 (+) b3 = 3ab [a (+) b] (+) b3  (10) 

 
If we observe (9) and (10), we will see that there are two 

hardware implementations of factor generators for (9) and (10). 
But, we can optimize these two factor generators into a single 
architecture. If we observe Fig. 2, the first stage prediction is 
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done for determining value of a and the second stage prediction 
onward are done for determining b. It is because from the second 
prediction onward, an can be computed as 2 (an-1 + bn-1). Hence, 
we can merge the architectures for (9) and (10) become single 
architecture that represents 3ab [a (+) b] (+) b3, since the first 
prediction is place on b and initial value of a = 0. For example, 
if we predict that a = 0 in the first stage prediction, we will get 
3ab [a (+) b] (+) b3 = 3x0x0 [0 (+) 0] (+) 03 = 0. On the other hand, 
if we predict that a = 1 in the first stage prediction, we will get 
3ab [a (+) b] (+) b3 = 3x0x1 [0 (+) 1] (+) 13 = 1. It is exactly the 
same with a itself. After those three optimizations, we can 
achieve an optimized hardware algorithm for cube root 
calculation that can be written as following pseudocode. 
 

 

proposed cube root algorithm  
 
 

definition     
    D       input data;  
    N       input bit-width;  
    Q       result; 
    d       data accumulator; 
    f        generated factor; 
    r        remainder; 
    a       cube root variable a; 
    b       cube root variable b; 
    iH      higher bound index; 
    iL       lower bound index; 
    i        iteration process index; 
initialization 
    a = 0; 
    b = 0; 
    iH = N - 1; 
    iL = N - 3;  
    d = D[iH : iL];   
process   
for (i = 1 to N/3) then 
      b = 1;                                         
      f = 3ab (a + b) + b;                   
      if (f <= d)   
          r = d - f;                       
      else 
          r = d; 
          b = 0;       
      end if 
      Q = {Q[(N/3) - 1], b};         
      a = 2 (a + b); 
      d = {r, D[(iH - 3i : iL - 3i]};                             
end for 
 

 
IV. PROPOSED ARCHITECTURE 

 
After optimizing the algorithm, we can design an optimized 

architecture for cube root calculator. There are five functional 
blocks to establish cube root calculator: main datapath, factor 
generator, control, sign-in, and sign-out units. Proposed main 
datapath architecture is shown in Fig. 3. In this architecture, 
components usage costs 3 buffer registers, 2 multiplexers, 1 

concatenation, and 1 subtraction. It shows that main datapath is 
efficiently designed by using simple operations. For factor 
generator unit, proposed architecture is shown in Fig. 4. Its 
components usage cost 1 buffer register, 2 shifters, 6 
multiplexers, 3 addition, and 1 multiplication. Multiplication is 
the most complex and area consuming operation here. Hence, 
we choose iterative process architecture in order to optimize the 
area consumption.  

Main datapath and factor generator units are connected each 
other through generated factor signal. In Fig.3, generated factor 
signal has n+1 bit-width. It needs to be compared with the 
existing accumulated data from accumulator register. It is 
produced from factor generator unit in Fig. 4, which is illustrated 
as output signal. After the main datapath and factor generator 
units are succesfully designed, we need to add three more units: 
control, sign-in, and sign-out units.  

Sign-in unit is responsible to check the input data format, 
sign integer has positive and negative values. In order to fulfill 
these requirements, we design sign-in unit to check if the input 
data is positive or negative. If input data is in positive form, it 
will be passed through to main datapath unit directly. If input 
data is in negative form that complies to 2’s complement format, 
it will be converted to positive form first. Sign-out unit is 
responsible to convert the obtained result into valid format. If 
the result has to be positive, it will be passed through output 
directly. If result has to be negative, it will be converted to 2’s 
complement format first before passed through output. Control 
unit is responsible to control the flow of cube root computation. 
Integrating all these units will establish a complete cube root 
calculator architecture as shown in Fig. 5. Actually, proposed 
architecture is generic architecture for integer cube root 
calculation. Hence, this architecture dan be adapted to comply 
any number of input bit-width scalability (e.g 16-bit, 32-bit, 64-
bit, 128-bit, etc). In this research, we use 32-bit input for 
prototyping purpose.   
 

 
Fig. 3. Main datapath architecture 
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Fig. 4. Factor generator architecture 

 

 
Fig. 5. Complete architecture for cube root calculator 

 
V. EVALUATION AND ANALYSIS 

 
A. Functional Test Evaluation 

For functional test purpose, we implement the proposed cube 
root architecture for 32-bit input bit-width by RTL coding and 
simulate it in Modelsim software. Fig. 6 shows the simulation 
result. We can see that integer input data can be computed 

successfully and valid output can be achieved after several clock 
cycles. For positive integer example, input data value is 75366 
and valid output is 42, because 75366 = 423 + 1278; input data 
value is 1730482 and valid output is 120, because 1730482 = 
1203 + 2482. For negative integer example, input data value is -
62976064 and valid output is -397, because |-62976064| = |-3973| 
+ 405291. Hence, we can conclude that proposed design is valid.  

Fig. 7 shows the latency cost. We can see in the waveform, 
calculation process needs 13 clock cycles latency. It means that 
a 32-bit input data design will consume 13 clock cycles latency. 
Input bit-width N is 32-bits. Thus, it needs to be appended 
becomes 33-bits in order to accommodate 3-digit subgroup 
system. Thus, latency cost will be [(32+1)/3]+2. We can state it 
in general form as [(N+1)/3]+2. 

 

  
Fig. 6. Simulation result 

 

 
Fig. 7. Latency cost  

 
B. Synthesis Report 

The design synthesis has been conducted for N = 32. Table I 
shows the synthesis results for a 32-bit input design architecture. 
Synthesis processes are done for several implementation FPGA 
type. The results show that the design consumes small area and 
has promising speed. The worst case delay happens from register 
in factor generator to remainder register in main datapath. Thus, 
for pipelining strategy, we can insert a pipeline into this path to 
reduce worst case delay.  
 

TABLE I. SYNTHESIS RESULTS 
 

 Altera Xilinx 
Family Cyclone II Stratix II Spartan 6 Virtex 5 

Area 
429 LEs 288 ALUTs 415 LUTs 380 LUTs 

121 Reg 121 Reg 121 Reg 119 Reg 

Delay (ns) 18.32 13.73 24.94 14.49 

Freq (MHz) 54.60 72.81 40.09 69.01 

 
C. Benchmarks 

Comparison with other works might be hard to do, because 
the publications about the cube root FPGA implementation are 
hard to be found. In several cases, the existing publications can 
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not be compared to each other directly. Because, each paper 
usually has a specific issue for the calculation or its target 
application. For example, paper [1] proposed a cube root 
architecture for IEEE 754-2008 standard. Although it has the 
same purpose to calculate cube root value, but the target 
application is different to ours.  

 
VI. CONCLUSION  

 
An optimized integer cube root algorithm and its efficient 

architecture for FPGA implementation are presented in this 
paper. Integer cube root calculation is computed by using 3-
digits of binary number and iterative calculation. Proposed 
algorithm’s idea is reducing computational complexity in factor 
generator. For design evaluations, we design a 32-bit integer 
cube root architecture. Evaluation results show us that the design 
architecture is valid. The design latency is defined by (N/3)+2, 
with N is bit-width of the design input. The design also has been 
synthesized for several FPGA with promising results in area 
consumption and speed. 
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